Silicon solar cells: illuminating barriers from the nano-scale to the "scientist-scale"

Rachel Woods-Robinson,^{1,2,3} Angela N. Fioretti,³ Jan Haschke,³ Mathieu Boccard,³ Kristin A. Persson,^{1,2} Christophe Ballif³ ¹ University of California, Berkeley, ² Lawrence Berkeley National Laboratory (LBNL), ³ École Polytechnique Fédérale de Lausanne

Silicon solar cells efficiencies are limited by bad contacts. Can we use inverse design to find a better "hole-selective contact"?

Back to basics

Nanoscale barriers Challenges in SHJ SHJ schematic Parasitic absorption: The top contact is not Band diagram transparent enough! Conduction (p) a-Si Ag Band gap E_g is too band (CB) (n) ITO small (n) a.Si $E_{G} =$ Can we find a 1.8 eV transparent hole elective contact, aka "p-layer", to replace (p) a-Si? Design requirements New SHJ device p-type material (how much?) Ag. More transparent than a-Si $E_G >$ VB "aligned" with c-Si's VB; 3.1 el no contact resistance Low interface recombination But these are qualitative... -Ag Theory-experiment barriers

Design new materials

1016 1018 Hole doping NA (cm⁻³)

Performance drops

can be explained by

recombination and

loss of quasi-fermi

level splitting

Evp = 5.8 eV

Updated design requirements

□ Band gap $E_G > 3 \text{ eV}$ (as expected) \Box EvB aligned to 5.5 eV; w/in ±0.3 eV for NA > 10¹⁸ cm⁻³, or w/in ±0.1 eV for $N_A > 10^{16}$ cm⁻³ for $D_t < 10^{12}$ □ Higher D_{it}: sharper E_{VB} and N_A requirements □ Mobility > 0.05 cm²V⁻¹s⁻¹ (less restrictive!)

Conclusions Developed COMPUTATION an inverse

BERKELEY LA

We've been

missing a multi-

parameter

approach

References

[1] NREL, (2020), "Best Research-Cell Efficiency Chart," [2] Woods-Robinson, R., et al. (2020), Journal of photovoltaics [3] Woods-Robinson, R., et al. (2021). 2020 47th IEEE Photovoltaic Specialists Conference (PVSC)

[4] Woods-Robinson, R., et al. (2020). Chemical Reviews, 120(9), 4007-4055.

Scientist-society barriers

How can we connect with our communities to build trust and communicate these challenges?

